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Recent large-scale genetic analyses of yeast have enabled the 
systematic screening of pairwise genetic interactions and provided 
valuable insights into the functional organization of a eukaryotic cell1 
as well as genetic networks underlying specific biological processes2,3. 
Despite the rapid growth in quantitative data on genetic interactions, 
we still have only a limited understanding of the molecular mecha-
nisms through which one mutation modifies the phenotypic effect 
of another. Furthermore, although the general properties of genetic 
interaction networks have been explored phenomenologically1,4, we 
often lack a mechanistic understanding of these patterns. For example, 
a recent large-scale study reported that single mutants with severe fit-
ness defects tend to have numerous genetic interactions1, a phenom-
enon that still awaits explanation. Finally, the systematic generation 
of biological hypotheses from the welter of phenotypic data produced 
by interaction screens remains a major challenge. By examining how 
cellular phenotypes arise from the operation of molecular networks, 
systems biology offers great promise for meeting these challenges.

Metabolism is one of the best characterized cellular subsystems and 
is especially suited for system-level studies of the genotype-phenotype 
relationship and, hence, genetic interactions. This is because first, 
high-quality metabolic network reconstructions are available that 
specify the chemical reactions catalyzed by hundreds of enzymes and 
cover the molecular function for a substantial fraction of the genome 

(for example, 15% in yeast)5. Second, these reconstructions can be 
converted into computational models to calculate the phenotype of 
both wild-type and mutant cells using constraint-based analysis tools6 
such as flux balance analysis (FBA). This imposes mass balance and 
capacity constraints to define the space of feasible steady-state flux 
distributions of the network and then identifies optimal network states 
that maximize biomass yield, a proxy for growth. Despite its simpli
city and low data requirements, this modeling framework has shown 
great predictive power and has been successfully applied to various 
research problems7, including predicting the viability of single-gene 
deletants8 and model-driven analysis of high-throughput data8–10. 
Although some properties of genetic interaction networks have also 
been addressed using FBA, these earlier studies were exclusively11,12 
or mainly13,14 theoretical because of the lack of large-scale genetic 
interaction data for metabolic genes.

To bridge the gap between theory and experiment, we have 
systematically measured genetic interactions between pairs of 
metabolic genes in yeast and combined these data with a detailed 
metabolic network reconstruction. Quantitative measurement of the 
fitness of single and double mutants has enabled us to detect both 
negative (aggravating) and positive (alleviating) interactions (that is, 
the double mutant has a lower or higher fitness, respectively, than 
would be expected from the product of the single-mutant fitnesses). 
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Our integrated approach had three major goals. First, we investigated 
the distribution of genetic interactions within and across functional 
modules as defined by classical annotation groups and network-based 
mathematical methods. Second, we performed constraint-based 
analysis of the network to simulate mutational effects and predict 
interactions in silico. We then employed our in vivo interaction data 
to test the model’s ability to capture the general properties of genetic 
interaction networks and to assess the validity of its specific predic-
tions. Third, we automated the reconciliation of empirical interaction 
data with model predictions and used discrepancies to update the 
metabolic network and direct biological discovery.

RESULTS
Constructing a genetic interaction map of yeast metabolism
We selected genes for our genetic interaction map based on an updated 
reconstruction of the S. cerevisiae metabolic network, which consists 
of 1,412 reactions and accounts for 904 genes10. Genetic interaction 
data has been generated by large-scale synthetic genetic array (SGA) 
technology15. First, we performed new screens to construct a map 
that covers all major metabolic subsystems, except for transfer RNA 
aminoacylation. The screens involved construction of high-density 
arrays of double mutants by crossing 613 query mutants, including 
78 hypomorphic alleles of essential genes, against an array of 470 null 
mutants, producing double mutants for 184,624 unique gene pairs. 
The fitness of single and double mutants was assessed quantitatively 
by measuring colony size16. We calculated interaction scores (ε) based 
on the deviation of the double-mutant fitness (f12) from the product 
of the corresponding single-mutant fitnesses (ε = f12 – f1·f2)17. Second, 
we supplemented our measurements with data from our recent large-
scale genetic interaction screen1, which employed the same experi-
mental procedure as the present study but represented genes in all 
functional categories, including metabolism.

Overall, our combined dataset covers more than 80% of metabolic 
network genes, including 82 essential genes, and provides interaction 
scores for 215,907 pairs, 57% of which have been independently 
screened more than once. Applying a previously defined confidence 

threshold that proved informative in functional analyses1, we detected 
3,572 negative and 1,901 positive interactions (Online Methods). We 
focused on interactions between null mutations of non-essential genes 
(176,821 pairs) because of their better coverage and easier interpreta-
tion; data on essential genes has only been used for specific analyses. 
Additionally, we also defined a high-confidence interaction set based 
on the reproducibility of replicate experiments and used it when very 
low false-positive rates were required.

Genetic interactions are frequent between functional modules
We took advantage of our quantitative genetic interaction map 
to empirically test earlier predictions about the distribution of 
interactions within and between metabolic functional modules. 
Specifically, a computational study based on FBA suggested that i, 
genetic interactions are enriched within metabolic annotation groups, 
and ii, interactions between different functional groups tend to be 
either exclusively negative or exclusively positive, a property termed 
‘monochromaticity’11.

First, we report a modest, but significant, enrichment of both 
negative (1.6-fold, P < 10−3) and positive (2.5-fold, P < 10−15) inter
actions within classically defined functional modules. For example,  
lipid metabolism is especially enriched in genetic interactions, 
with sterol metabolism and fatty acid biosynthesis being primarily 
enriched in positive interactions, and both forms of interactions 
are overrepresented in sphingolipid metabolism (Fig. 1). Notably, 
the enrichments remain after controlling for potential confound-
ing variables, such as paralogy18, physical interaction3 or single-
mutant fitness1 (Online Methods), and become more pronounced 
when using the high-confidence interaction set (3.8-fold and 8.7-
fold enrichment of negative and positive interactions, respectively). 
However, as Figure 1 shows, the majority of genetic interactions occur 
between genes assigned to different metabolic functions (93% of nega-
tive and 90% of positive, or 86% and 73%, respectively, when using 
high-confidence interactions). The fact that even strongly enriched 
functional groups, such as fatty acid biosynthesis, have numerous 
interactions with other groups indicates widespread pleiotropy across 

metabolic subsystems.
Next, we asked whether interactions 

between different functional groups tend to 
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Figure 1  Distribution and monochromaticity 
of genetic interactions between functional 
groups. The radii of the circles represent 
the fraction of screened gene pairs that 
show genetic interaction within and between 
functional annotation groups (for example, 
sterol metabolism has the highest prevalence of 
interactions with a value of 0.225). Enrichment 
of genetic interactions within functional groups 
is visually apparent and corresponds to the 
larger circles on the diagonal. The colors of 
the circles reflect the monochromatic score 
defined as the normalized ratio of positive 
to all interacting pairs (Online Methods). 
Functional groups displaying only positive 
genetic interactions between each other have 
a monochromatic score of +1 (green), whereas 
those interacting purely negatively have a score 
of −1 (red). The background ratio of positive to 
all interactions (0.348) corresponds to a score 
of 0 (gray). Only the top 20 functional groups 
with the largest number of screened gene pairs 
and those genes assigned to only one functional 
group are included in the plot.
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be either exclusively negative or positive. In agreement with theoretical 
predictions11, we found a statistically significant excess of monochro-
maticity among pairs of functional groups in the real data compared 
to randomized interaction maps (P < 10−4). For example, whereas 
sterol metabolism displays almost purely negative interactions with 
tyrosine, tryptophan and phenylalanine metabolism, it predominantly 
interacts positively with fatty acid biosynthesis (Fig. 1). Nevertheless, 
monochromaticity in our genetic interaction map is modest: only 
~24−34% more monochromatic pairs were found than expected by 
chance, a conclusion that remained qualitatively the same when using 
high-confidence interactions (Supplementary Table 1).

As an alternative to functional groups defined based on classical 
biochemical pathways, unbiased mathematical methods have been 
developed to measure functional relatedness based on coherent usage 
of reactions in the metabolic network6,19. In particular, flux coupling20 
provides a biochemically sound definition of functional relatedness 
and has strong physiological and evolutionary relevance21–23. To fur-
ther investigate the distribution of genetic interactions within and 
between functional modules, we identified flux-coupled gene pairs 
computationally (that is, pairs of reactions where the activity of one 
reaction implies the activity of the other, either reciprocally or in one 
direction; Online Methods). In agreement with results obtained using 
annotation groups, although we find that both negative (twofold) and 
positive (2.7-fold) interactions are enriched in flux-coupled pairs (P < 
10−6 and P < 10−8, respectively), the overwhelming majority (> 97%) 
of both forms of interactions occur between uncoupled genes, even 
when only high-confidence interactions are investigated (> 93%).

In conclusion, both definitions of functional relatedness reveal that 
most genetic interactions connect across distinct functional modules, 
extending an earlier estimate that synthetic lethal interactions are 3.5 
times more likely to span pairs of protein-protein interaction path-
ways than to occur within such pathways24. Furthermore, our finding 
that both negative and positive interactions tend to occur between 
metabolic modules is consistent with recent observations that both 
forms of interactions primarily connect genes belonging to different 
protein complexes1,16.

A systems model explains genetic interaction connectivity
To further explore the organizational principles of the genetic inter-
action network, we next investigated its degree distribution using a 

computational model of metabolism. A prominent attribute of genetic 
interaction networks, also shared by other biological networks25, is 
that the majority of genes show few interactions, and a minority of 
‘hub’ genes are highly connected1,4. Furthermore, a recent study 
uncovered a strong correlation between the number of genetic inter-
actions a gene shows and the fitness defect associated with its deletion 
(dispensability)1, a pattern also confirmed by our empirical metabolic 
interaction map (Supplementary Fig. 1). Nevertheless, the tendency 
of ‘sick’ single mutants to engage in an especially high number of both 
negative and positive interactions remains unexplained. Intuitively, 
one expects that a strongly deleterious single mutation can mask a 
large number of mildly deleterious mutations in other genes and, 
hence, show numerous positive interactions. However, a similar logic 
would imply a paucity of negative interactions for sick mutants (mean-
ing a sick deletant is less likely to be made worse by other mutations), 
an expectation that is inconsistent with observations1.

To probe whether a simple structural model of metabolism is able 
to capture the above properties of genetic interaction networks, we 
computed in silico interaction degrees and single-mutant fitness using 
FBA. Similar to the empirical data, in silico genetic interaction degree 
is also unevenly distributed, with only ~12% of genes accounting for 
the majority (~85%) of interactions. Most remarkably, the model pre-
dicted a strong negative correlation between single-mutant fitness and 
genetic interaction degree for both positive and negative interactions, 
confirming the trend observed in the experimentally derived genetic 
interaction network (Spearman’s ρ = −0.89 and ρ = −0.66, respectively). 
Notably, these trends remained when genes without any in silico fitness 
contribution were excluded from the analysis (ρ = −0.59, P < 10−3 for 
positive interactions and ρ = −0.47, P = 0.005 for negative interactions; 
Fig. 2a), showing that the associations are not simply caused by the 
presence of silent reactions in the metabolic model.

Having established its ability to capture the high genetic inter
action connectivity of sick mutants, we asked the metabolic model 
to provide mechanistic explanations. One reason why a gene might 
have numerous genetic interactions is that it contributes to multiple 
biological processes (that is, it is highly pleiotropic), and hence, the 
phenotypic effect of its deletion may be modulated by a large number 
of other genes, each of them negatively or positively affecting a dif-
ferent aspect of its functionality. Indeed, it has been reported that 
genetic interaction hubs often display multifunctionality1. If highly 
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pleiotropic genes also have (on average) a large fitness contribution, 
then we would expect a negative correlation between single-mutant 
fitness and interaction degree. Although pleiotropy is difficult to 
define empirically, the FBA framework offers a rigorous approach to 
compute pleiotropy and test this idea. To do this, we determined the 
number of key metabolites (so called biomass components, including 
amino acids, nucleotides, and so on) whose maximal production is 
affected by the absence of each gene (Online Methods)26. In accord-
ance with our hypothesis, we found a strong association between the 
number of biosynthetic processes to which a gene contributes and 
the predicted fitness of its deletant (ρ = −0.83, P < 10−9 on raw data 
for genes with a nonzero deletion effect; see also Fig. 2b). Moreover, 
pleiotropy correlates with both in silico and in vivo genetic interaction 
degrees (negative degree: ρ = 0.55 and ρ = 0.24; positive degree:  
ρ = 0.62 and ρ = 0.25, respectively; P < 10−8 in all cases). Given the 
close association between computationally derived single-mutant 
fitness and pleiotropy, we next performed partial correlation ana
lyses to disentangle the effects of these factors on in silico interaction 
degrees. Our multivariate analyses revealed that, although positive 
interaction degree is determined by single-mutant fitness (a finding 
consistent with the idea that severe mutations can mask numerous 
milder mutations), negative interaction degree is driven by pleiotropy 
(Supplementary Table 2).

Taken together, these computational results suggest that the struc-
ture of the metabolic network dictates both the fitness contribution 
(and hence positive interaction degree) and the functional pleiotropy 
(and hence negative interaction degree) of genes. Future empirical 
studies of pleiotropy will help to clarify whether these mechanisms 
also adequately explain in vivo genetic interaction degrees.

No prevalent positive interactions in essential genes
A recent FBA study suggested that non-lethal mutations in essential 
metabolic genes have strikingly different interaction patterns com-
pared to null mutations of non-essential genes14. Specifically, it was 
predicted that essential metabolic genes frequently show positive 
interactions with other metabolic genes regardless of their function 
or the latter’s essentiality, strongly skewing the ratio of positive to 
negative interactions. Although a small-scale empirical analysis was 
consistent with this prediction14, it remained to be seen whether it 
was supported by large-scale experiments. Accordingly, we mapped 
genetic interactions between hypomorphic alleles2 of a set of essen-
tial genes and null mutants of non-essential genes, screening 39,086 
pairs. If positive interactions were indeed highly abundant between 
gene pairs involving an essential reaction, then we should observe a 
strong bias toward positive interactions for essential genes. Although 
we found that essential genes have an increased number of positive 
interactions, they also show more negative interactions, and therefore 
their ratio of positive to negative interactions is virtually identical to 
those of non-essential genes (Wilcoxon test P = 0.89; Fig. 2c). In sum, 
we failed to find empirical evidence for the predicted high prevalence 
of positive genetic interactions for essential metabolic genes. Given 
that the only experimental study reporting abundant positive inter
actions investigated only a handful of non-metabolic essential genes14, 
we speculate that the discrepancy between the small-scale study14 and 
our results could partly be because of sampling bias in the former.

Fine-scale evaluation of predicted genetic interactions
Our comprehensive genetic interaction map provides an unprec-
edented opportunity to assess the FBA framework’s ability to predict 
individual interactions. To rigorously estimate the fraction of true 
predicted interactions (precision) and the fraction of experimentally 

observed interactions that are captured by the model (recall or true-
positive rate), we selected a set of high-confidence empirical inter
actions between non-essential genes (Online Methods) and excluded 
genes that are associated with poorly characterized network parts 
(blocked reactions20). This resulted in 325 negative and 116 positive 
interactions among 67,517 non-essential gene pairs. We found that 
experimentally identified interactions are highly overrepresented 
among predicted strong interactions, with up to 100-fold and 60-fold 
enrichment for negative and positive interactions, respectively (with 
precision values of 50% and 11%, respectively; Fig. 3). Although 
this confirms that the highest predicted interaction scores have high 
physiological relevance13, we find that only a minority of empirical 
interactions are captured by the model at the same cutoff points 
(the recall values were 2.8% and 12.9% for negative and positive 
interactions, respectively), a conclusion that remained unchanged 
when an alternative algorithm27, an alternative interaction score11 
or a less compartmentalized metabolic model28 was employed to 
compute interactions (Supplementary Figs. 2a–c). Notably, only a 
minority of gene pairs that show negative (7.6%) or positive (3%) 
interactions in vivo display nonzero interaction scores of the opposite 
sign in silico, indicating that the low recall of the model stems from 
missed genetic interactions, not from misclassification of the two 
forms of interactions.

Why are so many genetic interactions missed by the model? First, 
as single-mutant fitness predictions are far from perfect8,10, one might 
expect that interaction between two non-essential genes could be 
missed simply because one or the other gene is essential in the model. 
Indeed, ~24% of negative and ~22% of positive interactions are missed 
because of misprediction of single-mutant viability. Although the 
true-positive rate of genetic interaction predictions slightly improves 
when genes falsely predicted to be essential are excluded, the majority 
of empirical interactions are still not captured by the model. In par-
ticular, FBA predicts strong negative interaction scores for only 3.7% 
of in vivo negative interactions, indicating that it overpredicts double-
mutant fitness in the majority of these gene pairs. Second, weak  
in vivo genetic interactions might be inherently less reproducible by 
the metabolic model. Although this idea is supported by an improved 
true-positive rate for strong in vivo interactions (~17% for ε ≤ −0.5 
and 25% for ε ≥ 0.15), we conclude that even the strongest interactions 
are frequently missed by the model. Third, FBA predicts optimal 
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metabolic behavior without incorporating regulatory mechanisms. 
Consequently, reactions that are downregulated in vivo could never-
theless compensate deletions in other parts of the network in silico, 
and therefore the model likely underestimates mutational effects. To 
address this possibility, we used published quantitative transcriptome 
data29 to identify non-expressed metabolic genes and constrained 
the corresponding reaction activities to zero in the simulations30. 
Imposing transcriptional constraints did not noticeably improve 
predictions (Supplementary Fig. 2d), suggesting that detailed infor-
mation on other layers of regulation31 (for example, metabolic regula-
tion32), data on toxic intermediates and more sophisticated modeling 
frameworks (for example, regulatory FBA33) are needed to probe the 
performance limits of genome-scale models. Finally, aside from the 
limitations of FBA, some false predictions likely indicate incomplete 
knowledge or annotation errors in the metabolic network.

Numerous statistical methods have been proposed to predict 
genetic interactions by combining heterogeneous sources of genomic 
and functional data (for example, sequence homology, physical inter-
action, co-expression and so on)34,35. These statistical approaches 
serve complementary roles to FBA. Whereas biochemical modeling 
has the advantage of easy interpretability and offers direct mechanistic 
insights, statistical models may illuminate the amount of informa-
tion available in large-scale datasets to predict genetic interactions. 
Thus, we asked whether such methods may substantially improve our 
knowledge of genetic interactions in the metabolic network.

To assess the performance of statistical modeling, we first compiled 
a dataset of gene-pair characteristics (following earlier studies34,35 
and based on metabolic network features but omitting any informa-
tion on genetic interactions; Supplementary Note) and used data-
mining methods (random forest36 and logistic regression) to classify 
genetic interactions based on these features. Although an increased 
fraction of in vivo interactions could be retrieved, ~70% of negative 
and ~75% of positive interactions were still predicted with very low 
(<10%) precision (Supplementary Fig. 3). Thus, we conclude that 
the majority of genetic interactions are not well understood either in 
terms of biochemical processes or statistical associations. Notably, 
incorporating FBA-derived fitness and genetic interaction scores 
into statistical models boosts the precision of negative interaction 

predictions (Supplementary Fig. 3), indicating that biochemical 
modeling provides unique information that is not captured by purely 
statistical data integration.

Automated model refinement using genetic interaction data
To reconcile discrepancies between empirical and computational 
genetic interaction maps, we developed a machine-learning method 
that automatically generates hypotheses to explain in vivo compensation 
(negative interaction) between genes. In contrast with a previously 
proposed approach37 that reconciled experimental and computational 
growth data mutant by mutant, we sought to minimize model mispre-
dictions globally (that is, using all available data) by using a two-stage 
genetic algorithm (Fig. 4a and Supplementary Note). The following 
types of changes to the model were allowed37: i, modifying reaction 
reversibility, ii, removing reactions and iii, altering the list of biomass 
compounds required for growth (Supplementary Note).

Our automated method suggested several modifications 
(Supplementary Table 3) that, together, considerably improved the 
fit of the model to our genetic interaction map (100–267% increase 
in recall and 44–59% increase in precision; Fig. 4b). Notably, cross-
validation confirmed that our method also significantly (P < 0.002) 
improves the model’s ability to predict genetic interactions that were 
not used in model refinement (with recall increased by ~87% on aver-
age; Supplementary Note).

As an example of a modification suggested by our method, it showed 
that omitting glycogen from the set of essential biomass components 
corrects two falsely predicted genetic interactions. This is congruent 
with glycogen’s role as a reserve carbohydrate, which becomes impor-
tant in nutrient-depleted or stress conditions38. Remarkably, our algo-
rithm also revealed that removal of only one or two reactions from the 
network corrects the prediction of four negative interactions between 
alternative NAD biosynthesis pathways. In particular, the published 
network reconstruction10 contains three biosynthetic routes for NAD, 
and removing the two-step path from aspartate to quinolinate uncov-
ers pairwise compensation between the other two pathways (Fig. 5a). 
Notably, although de novo NAD synthesis from aspartate is present 
in Escherichia coli39, it has no genes annotated in the yeast network, 
and bioinformatics analyses failed to find yeast homologs of the E. coli 

Figure 4  Automated model refinement 
procedure. (a) Workflow of the two-stage  
model refinement method. In the first stage, 
a coarse-grained search is executed in which 
candidate models are evaluated only for those 
gene pairs that show interaction either in vivo 
or in silico according to the original model.  
In the second stage, the best models are 
refined in a restricted search space that is 
based on the results of the first stage but  
using all available data to evaluate the  
models. This two-stage approach made  
it feasible to explore a large space of  
candidate hypotheses while also making  
use of all available phenotypic data.  
(b) Results of eight independent runs of 
the model refinement algorithm. Fits of the 
modified (blue to green) and unmodified 
original (red) models to our empirical 
genetic interaction data are visualized by 
both precision recall and partial ROC curves 
(inset). Dashed lines represent the levels of 
discrimination expected by chance. Note that 
the same empirical dataset was used for both model refinement and model evaluation, meaning no unseen test data was used to generate these 
plots. For a cross-validation estimate of model improvement, see the main text and the Supplementary Note.
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enzymes (Supplementary Note). To further investigate whether qui-
nolinate formation from aspartate might be wrongly included in the 
yeast reconstruction, we interrogated the metabolic model to deduce 
specific predictions for experimental testing. We found that only the 
refined model predicts the essentiality of genes in the kynurenine 
pathway (BNA1, BNA2, BNA4 and BNA5) when nicotinic acid is 
absent from the medium. Next, we tested these predictions experi-
mentally and confirmed that deletants of all four genes were nicotinic 
acid auxotrophs (Fig. 5b). Together, these results strongly suggest that 
the aspartate to NAD pathway is not present in yeast40.

Our automated procedure identified additional erroneous pre-
dictions between NAD pathway genes and suggested further modi-
fications (Supplementary Table 3), prompting us to thoroughly 
revise NAD biosynthesis in the published reconstruction. Based on 
inspection of interaction data, single-mutant phenotypes and litera-
ture information, we propose a number of changes including modi-
fications of gene-reaction associations and reaction reversibilities 
(Supplementary Fig. 4). The revised model is not only consistent 
with literature data but also improves both interaction (12 correc-
tions) and gene essentiality (1 correction) predictions.

DISCUSSION
A system-level understanding of genetic interactions requires the 
integration of experimental and theoretical approaches. To progress 

toward this goal, we experimentally mapped interactions in yeast 
metabolism and systematically compared empirical data with pre-
dictions from a biochemical model. Our approach provides the first 
glimpse of genetic interactions in small-molecule metabolism and 
establishes the performance limits of a genome-scale metabolic 
model. We show that a simple structural model of metabolism cap-
tures several organizational properties of genetic interaction networks 
and suggests mechanistic hypotheses.

Notably, the computational model sheds new light on the rela-
tionship between the severity of mutational effects and genetic inter
actions. The FBA model not only captures the previously unexplained 
relationship between fitness effect and genetic interaction degree but 
also suggests a new mechanistic link between negative interaction 
degree and functional pleiotropy; the effect of mutations in pleio-
tropic genes may be modulated by mutations in a large number of 
other genes, each of them compensating a different aspect of the first 
gene’s functionality.

Although we reported a coarse-grained consistency between model 
predictions and experiments, evaluation of individual interaction 
predictions revealed abundant discrepancies. In particular, FBA fails 
to capture the majority of experimentally determined genetic inter
actions, an attribute shared with statistical models built with data 
integration. Furthermore, interaction patterns of hypomorphic alleles 
of essential genes are grossly mispredicted, resulting in a discrepancy 
between our empirical data and a previous theoretical expectation 
about the high prevalence of positive interactions14.

We can draw several conclusions from these inconsistencies. First, 
the quality and completeness of the metabolic reconstruction should 
be improved. Second, although null mutations can easily be repre-
sented in the FBA framework, simulation of hypomorphic alleles is 
inherently problematic as it hinges on assumptions about the relation-
ship of enzyme activity to flux41. Third, the fact that a large number 
of in vivo instances of genetic interactions are not explained by the 
structure of the metabolic network suggests that regulation at both the 
gene expression and metabolite-enzyme levels should be taken into 
account in future attempts to realistically model metabolic behavior 
in genetically perturbed cells42.

Most importantly, the comprehensive interaction map can be used 
to refine the metabolic model. Indeed, reconciling discrepancies 
between predicted and observed phenotypes is of central importance 
in developing systems biology models43,44. We showed the feasibility 
of an automated method to refine the metabolic model. We anticipate 
that similar approaches, coupled with high-throughput experimen-
tation, have the potential to close the iterative cycles of generating 
and testing new hypotheses, leading to at least partial automation of 
biological discoveries45,46.

URLs. Interaction data and modified metabolic reconstruction are 
available at http://www.utoronto.ca/boonelab/data/szappanos/; GLPK 
(GNU Linear Programming Kit); http://www.gnu.org/software/glpk/; 
CPLEX Optimizer, http://www-01.ibm.com/software/websphere/ilog/.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Experimental mapping of genetic interactions. We used SGA methodology, 
an automated form of genetic analysis, to construct high-density arrays of 
double mutants (for details, see refs. 4,15.). Quantitative assessment of genetic 
interactions requires measurements of single- and double-mutant fitness and 
an estimate of the double-mutant fitness that would be expected based on 
the single-mutant phenotypes. Mutant fitnesses were derived from colony 
sizes after correcting systematic experimental biases (including positional 
effects, spatial effects, nutrient competition and screen batch effects)16. Single-
mutant fitness was estimated using a set of control SGA screens, in which 
the queries carried a mutation in a neutral genomic locus1. Double-mutant 
fitness was estimated by employing the regular SGA protocol. We used the 
obtained single- (fi and fj) and double-mutant fitnesses (fij) to derive genetic 
interaction measures as ε = fij– fi·fj. A statistical confidence measure (P value) 
was assigned to each interaction based on a combination of the observed vari-
ation of each double mutant across four experimental replicates and estimates 
of the background log-normal error distributions for the corresponding query 
and array mutants1,16.

To explore the general properties of the metabolic genetic interaction map, 
we applied a previously suggested1 confidence threshold of |ε| > 0.08 and  
P < 0.05 to define significantly interacting gene pairs. This threshold has been 
previously shown1 to yield a good balance between coverage and precision and 
defines genetic interactions that cover at least ~35% of negative and ~18% of 
positive interactions deposited in BioGrid49 with estimated precisions of ~63% 
and ~59%, respectively. In the case of replicate screens (for example, both AB 
and BA pairs were screened), we applied the following procedure: if replicate 
screens showed opposite interaction signs and at least one of them was signi
ficant, both pairs were removed; and if they showed the same interaction sign 
(both positive or both negative), the interaction with the lowest P value was 
retained and both pairs were reported with that interaction. Comparison of 
interactions from screens performed in the present study with those from a 
full-genome study1 showed a good correlation (r = 0.76) between interaction 
scores that were identified as significant by both studies. The high cross-study 
correlation allowed us to merge interaction data from the present study with 
interaction data on metabolic gene pairs from the genome-scale screens1.

Additionally, we also defined a smaller high-confidence dataset in which 
all gene pairs were independently screened at least twice to minimize false 
interactions. Here, two genes were considered as interacting if at least one 
screen showed |ε| > 0.08 and P < 0.05 and another screen shows P < 0.05 with 
the same interaction sign, whereas non-interacting pairs are defined as those 
not showing |ε| > 0.08 and P < 0.05 in any of the screens. Any other gene pairs 
were removed from the high-confidence set. This resulted in 529 negative and 
194 positive interactions between 122,875 gene pairs.

Interaction data can be downloaded from our website (see URLs).

Analysis of the effect of functional relatedness, paralogy and protein-
protein interactions on genetic interactions. We used logistic regression 
analysis to test the association between genetic interaction and various cate-
gorical and continuous features (for example, paralogy, co-functionality, single 
mutant fitness, and so on). Functional annotation groups were as defined in 
the published metabolic reconstruction10, and information on physical inter-
actions between proteins was extracted from the BioGrid 2.0.58 database49. 
Paralog gene pairs were identified by performing all-against-all BLASTP 
similarity searches50 of yeast open reading frames. We defined two genes as 
paralogs if i, the BLAST score had an expected value E < 10−8, ii, alignment 
length exceeded 100 residues, iii, sequence similarity was > 30% and iv, they 
were not parts of transposons.

Monochromaticity analysis. To examine the monochromaticity of genetic 
interactions between pairs of functional annotation groups, we defined a mono
chromatic score (MC) as follows. Let prij denote the ratio of positive to all 
genetic interactions between group i and j, and let bpr denote the background 
ratio of positive to all interactions:

if MCpr bpr pr bpr bprij ij ij> = − −, ( )/( )1

if MCpr bprij ij= =, 0

if MCpr bpr pr bpr bprij ij ij< = −, ( )/

A pair of groups showing purely positive (or purely negative) genetic interac-
tions between each other has an MC score equal to +1 (or −1), whereas those 
reflecting the background ratio (bpr) have MC scores of 0. We computed MC 
scores based on those genes that are assigned to one functional group only.  
A pair of functional groups was considered monochromatic if |MCij| > 0.5.

To assess the significance of monochromaticity, we compared the 
monochromatic score of the experimentally determined genetic interaction 
network to those of 10,000 interaction maps that were constructed by rand-
omizing the sign of each genetic interaction while keeping constant the total 
number of negative and positive interactions and conserving the annotation 
groups (see ref. 11). We restricted our analysis to those functional group 
pairs that showed at least two or three interactions between each other 
(Supplementary Table 1).

Computing the impact of mutations and genetic interactions by flux bal-
ance analysis. The recently reconstructed metabolic network (iMM904)10 
of S. cerevisiae was employed to simulate gene deletions. The reconstruction 
included 904 genes and 1,412 reactions and gave information on the stoichi-
ometry and direction of biochemical reactions, their assignment to subcel-
lular compartments and their associations to protein coding genes (including 
information on isoenzymes and enzyme complexes). Details of flux balance 
analysis (FBA) have been described elsewhere6. The simulated growth medium 
was set up to mimic the one used in the experiments (see the Supplementary 
Note for more details). CAN1, LYP1, URA3, LEU2 and MET17 were removed 
from the iMM904 reconstruction to mimic the strain background used in 
the experiments.

We employed linear programming to identify the maximum biomass yield 
of the wild-type network. The impact of gene deletions (null mutations) were 
calculated by constraining the corresponding reaction fluxes to zero and using 
either FBA or a linearized version of MOMA27 to compute biomass yields of 
the mutant networks. Mutant fitness was defined as the biomass yield relative 
to wild type, and interaction between two mutations was calculated as fol-
lows: ε = f12 – f1·f2 (where f1, f2 and f12 refer to the single and double mutant 
fitnesses, respectively). To compute the effect of a partial (non-null) mutation 
in a gene, we constrained the flux of its corresponding reaction to ≤50% of 
its wild-type level14.

All calculations were carried out in the custom software package Sybil 
(G.G.-D. and M.J.L., unpublished data), developed in the R statistical envi-
ronment51 and using solvers GLPK and CPLEX (see URLs).

Exploring the general properties of the FBA-derived genetic interaction 
map. To generate an in silico genetic interaction map based on FBA, we com-
puted interaction scores between all non-essential metabolic gene pairs and 
considered two genes as interacting if they had a predicted |ε| > 10−4 (using 
a more stringent cutoff did not qualitatively affect our results). To investigate 
the relationship between in silico single-deletion fitness and other computed 
network properties (in silico genetic interaction degree and pleiotropy), we 
focused only on those genes i, whose reactions are not blocked (meaning 
they can attain a flux in some steady states of the network) and ii, whose 
removal affect the reaction content of the network (they do not have isoen-
zymes), thereby excluding genes that cannot have any single deletion effect in 
the model. Furthermore, some sets of genes would always produce identical 
phenotypes in the model simulations and cannot be treated as independent 
data points in statistical analyses (for example, genes encoding flux coupled 
reactions or subunits of the same protein complex). To avoid such a bias in our 
analysis, we represented each correlated gene set with one randomly chosen 
gene. These filtering procedures resulted in 193 genes.

Computing system-level functional pleiotropy. We used the metabolic model 
to derive a measure of functional pleiotropy for each metabolic gene. The 
model specifies a list of 54 metabolites that are essential for biomass formation 
and therefore for in silico growth (for example, amino acids, carbohydrates, 
fatty acids, and so on). We computed the maximum production yield of each 
biomass compound in the wild-type network by maximizing the flux through 
a pseudo reaction representing its secretion26. Next, we deleted each gene and 
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examined whether the knockout showed a reduction in the maximum produc-
tion of a given compound (a flux reduction of ≥10−4 was considered signifi-
cant). Finally, for each gene, we counted the number of biomass compounds 
whose maximal production is affected by its deletion. This number reflects the 
network-level multifunctionality, and hence, the pleiotropy of a gene.

Identifying flux coupled genes in the network. Coupled genes were identified 
by applying the flux coupling finder algorithm20 on the metabolic network. 
We distinguished between coupled and uncoupled relationships between reac-
tion pairs: i, coupled (fully and directionally coupled) meant that activity of 
one reaction fixed the activity of the other and vice versa, or activity of one 

reaction implies the activity of the other, but not the reverse; and ii, uncoupled: 
activity of one reaction does not imply the activity of the other and vice versa, 
indicating that the reactions are not required to operate together. Coupling 
relationships were calculated without assuming a fixed biomass composition 
to avoid coupling of a large set of fluxes to the biomass reaction20.

49.	Breitkreutz, B.J. et al. The BioGRID Interaction Database: 2008 update. Nucleic 
Acids Res. 36, D637–D640 (2008).

50.	Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

51.	R Development Core Team. R: A Language and Environment for Statistical 
Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2007).
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